Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Dolbeault, Jean
HAL ID: 87 ORCID: 0000-0003-4234-2298 | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Esteban, Maria J.
HAL ID: 738381 ORCID: 0000-0003-1700-9338 | |
hal.structure.identifier | School of Mathematics - Georgia Institute of Technology | |
dc.contributor.author | Loss, Michael | |
dc.date.accessioned | 2021-10-29T13:00:35Z | |
dc.date.available | 2021-10-29T13:00:35Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/22122 | |
dc.language.iso | en | en |
dc.subject | Aharonov-Bohm magnetic potential | en |
dc.subject | magnetic Dirac operator | en |
dc.subject | Coulomb potential | en |
dc.subject | critical magnetic field | en |
dc.subject | self-adjoint operators | en |
dc.subject | eigenvalues | en |
dc.subject | ground state energy | en |
dc.subject | Hardy inequality | en |
dc.subject | Wirtinger derivatives | en |
dc.subject | Pauli operator Mathematics Subject Classification 2020 Primary 81Q10 | en |
dc.subject | Secondary 46N50 | en |
dc.subject | 81Q05 | en |
dc.subject | 47A75 | en |
dc.subject.ddc | 515 | en |
dc.title | Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities | en |
dc.type | Chapitre d'ouvrage | |
dc.description.abstracten | This paper is devoted to the study of the two-dimensional Dirac–Coulomb operator in presence of an Aharonov–Bohm external magnetic potential. We characterize the highest intensity of the magnetic field for which a two-dimensional magnetic Hardy inequality holds. Up to this critical magnetic field, the operator admits a distinguished self-adjoint extension and there is a notion of ground state energy, defined as the lowest eigenvalue in the gap of the continuous spectrum. | en |
dc.identifier.citationpages | 41-63 | en |
dc.relation.ispartoftitle | Partial Differential Equations, Spectral Theory, and Mathematical Physics .The Ari Laptev Anniversary Volume | en |
dc.relation.ispartofeditor | Pavel Exner, Rupert L. Frank, Fritz Gesztesy, Helge Holden, Timo Weidl | |
dc.relation.ispartofpublname | European Mathematical Society | en |
dc.relation.ispartofpublcity | Zürich | en |
dc.relation.ispartofdate | 2021 | |
dc.relation.ispartofpages | 494 | en |
dc.relation.ispartofurl | 10.4171/ECR/18 | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.ispartofisbn | 978-3-98547-007-5 | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.4171/ECR/18-1/4 | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2021-10-29T12:55:32Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |