• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities

Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2021), Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities, in Pavel Exner, Rupert L. Frank, Fritz Gesztesy, Helge Holden, Timo Weidl, Partial Differential Equations, Spectral Theory, and Mathematical Physics .The Ari Laptev Anniversary Volume, European Mathematical Society : Zürich, p. 41-63. 10.4171/ECR/18-1/4

Type
Chapitre d'ouvrage
Date
2021
Book title
Partial Differential Equations, Spectral Theory, and Mathematical Physics .The Ari Laptev Anniversary Volume
Book author
Pavel Exner, Rupert L. Frank, Fritz Gesztesy, Helge Holden, Timo Weidl
Publisher
European Mathematical Society
Published in
Zürich
ISBN
978-3-98547-007-5
Number of pages
494
Pages
41-63
Publication identifier
10.4171/ECR/18-1/4
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Esteban, Maria J. cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Loss, Michael
School of Mathematics - Georgia Institute of Technology
Abstract (EN)
This paper is devoted to the study of the two-dimensional Dirac–Coulomb operator in presence of an Aharonov–Bohm external magnetic potential. We characterize the highest intensity of the magnetic field for which a two-dimensional magnetic Hardy inequality holds. Up to this critical magnetic field, the operator admits a distinguished self-adjoint extension and there is a notion of ground state energy, defined as the lowest eigenvalue in the gap of the continuous spectrum.
Subjects / Keywords
Aharonov-Bohm magnetic potential; magnetic Dirac operator; Coulomb potential; critical magnetic field; self-adjoint operators; eigenvalues; ground state energy; Hardy inequality; Wirtinger derivatives; Pauli operator Mathematics Subject Classification 2020 Primary 81Q10; Secondary 46N50; 81Q05; 47A75

Related items

Showing items related by title and author.

  • Thumbnail
    Characterization of the critical magnetic field in the Dirac-Coulomb equation 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2008) Article accepté pour publication ou publié
  • Thumbnail
    Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac-Coulomb operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2022) Document de travail / Working paper
  • Thumbnail
    Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators 
    Esteban, Maria J.; Dolbeault, Jean; Bosi, Roberta (2008) Article accepté pour publication ou publié
  • Thumbnail
    Interpolation inequalities and spectral estimates for magnetic operators 
    Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael (2018) Article accepté pour publication ou publié
  • Thumbnail
    An analytical proof of Hardy-like inequalities related to the Dirac operator 
    Loss, Michael; Esteban, Maria J.; Dolbeault, Jean; Vega, Luis (2004) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo