• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Epidemiological Forecasting with Model Reduction of Compartmental Models. Application to the COVID-19 Pandemic

Bakhta, Athmane; Boiveau, Thomas; Maday, Yvon; Mula, Olga (2021), Epidemiological Forecasting with Model Reduction of Compartmental Models. Application to the COVID-19 Pandemic, Biology, 10, 1, p. 22. 10.3390/biology10010022

Type
Article accepté pour publication ou publié
External document link
https://hal.sorbonne-universite.fr/hal-03117258
Date
2021
Journal name
Biology
Volume
10
Number
1
Publisher
MDPI
Pages
22
Publication identifier
10.3390/biology10010022
Metadata
Show full item record
Author(s)
Bakhta, Athmane
Service de Thermo-hydraulique et de Mécanique des Fluides [STMF]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Boiveau, Thomas
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Maday, Yvon
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Mula, Olga cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We propose a forecasting method for predicting epidemiological health series on a two-week horizon at regional and interregional resolution. The approach is based on the model orderreduction of parametric compartmental models and is designed to accommodate small amounts ofsanitary data. The efficiency of the method is shown in the case of the prediction of the number ofinfected people and people removed from the collected data, either due to death or recovery, duringthe two pandemic waves of COVID-19 in France, which took place approximately between Februaryand November 2020. Numerical results illustrate the promising potential of the approach
Subjects / Keywords
COVID-19; Reduced basis; Epidemiology; Forecasting; Model reduction

Related items

Showing items related by title and author.

  • Thumbnail
    Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics 
    Argaud, J. P.; Bouriquet, B.; Gong, Helin; Maday, Yvon; Mula, Olga (2016) Communication / Conférence
  • Thumbnail
    State estimation with nonlinear reduced models. Application to the reconstruction of blood flows with Doppler ultrasound images 
    Galarce, Felipe; Gerbeau, Jean-Frédéric; Lombardi, Damiano; Mula, Olga (2019) Document de travail / Working paper
  • Thumbnail
    State Estimation with Model Reduction and Shape Variability. Application to biomedical problems 
    Galarce, Felipe; Lombardi, Damiano; Mula, Olga (2021) Document de travail / Working paper
  • Thumbnail
    A priori convergence of the Generalized Empirical Interpolation Method 
    Maday, Yvon; Mula, Olga; Turinici, Gabriel (2013) Communication / Conférence
  • Thumbnail
    Convergence analysis of the Generalized Empirical Interpolation Method 
    Maday, Yvon; Mula, Olga; Turinici, Gabriel (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo