Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces
Ehrlacher, Virginie; Lombardi, Damiano; Mula, Olga; Vialard, François-Xavier (2019), Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, ESAIM: Mathematical Modelling and Numerical Analysis, 54, 6, p. 2159 - 2197. 10.1051/m2an/2020013
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://hal.inria.fr/hal-02290431Date
2019Journal name
ESAIM: Mathematical Modelling and Numerical AnalysisVolume
54Number
6Publisher
EDP Sciences
Pages
2159 - 2197
Publication identifier
Metadata
Show full item recordAuthor(s)
Ehrlacher, VirginieCentre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Lombardi, Damiano
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Mula, Olga

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vialard, François-Xavier
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider the problem of model reduction of parametrized PDEs where the goal is to approximate any function belonging to the set of solutions at a reduced computational cost. For this, the bottom line of most strategies has so far been based on the approximation of the solution set by linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems, most transport-dominated problems are expected to present a slow decaying width and require to study nonlinear approximation methods. In this work, we propose to address the reduction problem from the perspective of general metric spaces with a suitably defined notion of distance. We develop and compare two different approaches, one based on barycenters and another one using tangent spaces when the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation methods. We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional conservative PDEs where the underlying metric space can be chosen to be the L2-Wasserstein space.Subjects / Keywords
Model reduction; metric spaces; Wasserstein space; conservation laws; Wasserstein spaces; PDERelated items
Showing items related by title and author.
-
Galarce, Felipe; Lombardi, Damiano; Mula, Olga (2021) Document de travail / Working paper
-
Galarce, Felipe; Gerbeau, Jean-Frédéric; Lombardi, Damiano; Mula, Olga (2019) Document de travail / Working paper
-
Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
-
Cancès, Éric; Ehrlacher, Virginie; Gontier, David; Levitt, Antoine; Lombardi, Damiano (2020) Article accepté pour publication ou publié
-
Galarce, Felipe; Gerbeau, Jean-Frédéric; Lombardi, Damiano; Mula, Olga (2021) Article accepté pour publication ou publié