• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Unit representation of semiorders I: Countable sets

Bouyssou, Denis; Pirlot, Marc (2020), Unit representation of semiorders I: Countable sets, Journal of Mathematical Psychology, 103, 102566. 10.1016/j.jmp.2021.102566

View/Open
DBMP_SO_Denum.pdf (565.5Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Journal of Mathematical Psychology
Volume
103
Number
102566
Publisher
Elsevier
Publication identifier
10.1016/j.jmp.2021.102566
Metadata
Show full item record
Author(s)
Bouyssou, Denis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Pirlot, Marc
Abstract (EN)
This paper proposes a new proof of the existence of constant threshold representations of semiorders on countably infinite sets. The construction treats each indifference-connected component of the semiorder separately. It uses a partition of such an indifference-connected component into indifference classes. Each element in the indifference-connected component is mirrored, using a “ghost” element, into a reference indifference class that is weakly ordered. A numerical representation of this weak order is used as the basis for the construction of the unit representation after an appropriate lifting operation. We apply the procedure to each indifference-connected component and assemble them adequately to obtain an overall unit representation.Our proof technique has several original features. It uses elementary tools and can be seen as the extension of a technique designed for the finite case, using a denumerable set of inductions. Moreover, it gives us much control on the representation that is built, so that it is, for example, easy to investigate its uniqueness. Finally, we show in a companion paper that our technique can be extended to the general (uncountable) case, almost without changes, through the addition of adequate order-denseness conditions.
Subjects / Keywords
Semiorder; Numerical representation; Constant threshold; Countable sets

Related items

Showing items related by title and author.

  • Thumbnail
    Unit representation of semiorders I: Countable sets 
    Bouyssou, Denis; Pirlot, Marc (2020) Document de travail / Working paper
  • Thumbnail
    Unit representation of semiorders II: The general case 
    Bouyssou, Denis; Pirlot, Marc (2020) Document de travail / Working paper
  • Thumbnail
    Unit representation of semiorders II: The general case 
    Bouyssou, Denis; Pirlot, Marc (2020) Article accepté pour publication ou publié
  • Thumbnail
    A Note on Candeal and Induráin’s Semiorder Separability Condition 
    Bouyssou, Denis; Pirlot, Marc (2020) Chapitre d'ouvrage
  • Thumbnail
    Preferences for multi-attributed alternatives: Traces, Dominance and Numerical Representations 
    Bouyssou, Denis; Pirlot, Marc (2004) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo