• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A C0,1-functional Itô's formula and its applications in mathematical finance

Bouchard, Bruno; Loeper, Gregoire; Tan, Xiaolu (2022), A C0,1-functional Itô's formula and its applications in mathematical finance, Stochastic Processes and their Applications, 148, p. 299-323. 10.1016/j.spa.2022.02.010

View/Open
functionnal_ito_C1.pdf (344.8Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Stochastic Processes and their Applications
Volume
148
Publisher
Elsevier
Pages
299-323
Publication identifier
10.1016/j.spa.2022.02.010
Metadata
Show full item record
Author(s)
Bouchard, Bruno
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Loeper, Gregoire
Monash University [Victoria, Australia]
Tan, Xiaolu
The Chinese University of Hong Kong [Hong Kong]
Abstract (EN)
Using Dupire’s notion of vertical derivative, we provide a functional (path-dependent) extension of the Itô’s formula of Gozzi and Russo (2006) that applies to C-0,1functions of continuous weak Dirichlet processes. It is motivated and illustrated by its applications to the hedging or superhedging problems of path-dependent options in mathematical finance, in particular in the case of model uncertainty. In this context, we also prove a new regularity result for the vertical derivative of candidate solutions to a class of path-depend PDEs, using an approximation argument which seems to be original and of own interest.
Subjects / Keywords
Itô's formula; mathematical finance

Related items

Showing items related by title and author.

  • Thumbnail
    Approximate viscosity solutions of path-dependent PDEs and Dupire's vertical differentiability 
    Bouchard, Bruno; Loeper, Grégoire; Tan, Xiaolu (2021-09) Document de travail / Working paper
  • Thumbnail
    Itô-Dupire's formula for C^{0,1}-functionals of càdlàg weak Dirichlet processes 
    Bouchard, Bruno; Vallet, Maximilien (2021) Document de travail / Working paper
  • Thumbnail
    Understanding the dual formulation for the hedging of path-dependent options with price impact 
    Bouchard, Bruno; Tan, Xiaolu (2022) Article accepté pour publication ou publié
  • Thumbnail
    Hedging of covered options with linear market impact and gamma constraint 
    Bouchard, Bruno; Loeper, Grégoire; Zou, Yiyi (2017) Article accepté pour publication ou publié
  • Thumbnail
    A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations 
    Bouchard, Bruno; Possamaï, Dylan; Tan, Xiaolu; Zhou, Chao (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo