• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

E4CLIM 1.0: The energy for a climate integrated model: Description and application to Italy

Thumbnail
Date
2019
Dewey
Economie de la terre et des ressources naturelles
Sujet
Renewable energy; climate variability; energy mix; mean-variance; sensitivity
JEL code
Q.Q5.Q56; Q.Q5.Q54
Journal issue
Energies
Volume
12
Number
22
Publication date
11-2019
Article pages
4299
Publisher
MDPI
DOI
http://dx.doi.org/10.3390/en12224299
URI
https://basepub.dauphine.fr/handle/123456789/21609
Collections
  • LEDa : Publications
Metadata
Show full item record
Author
Tantet, Alexis
541698 Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Stéfanon, Marc
541698 Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Drobinski, Philippe
541698 Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Badosa, Jordi
541698 Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Concettini, Sylvia
559614 Institut de Recherches Juridiques Interdisciplinaires [IRJI EA 7496 - Faculté de Droit]
Creti, Anna
163511 Laboratoire d'Economie de Dauphine [LEDa]
D’Ambrosio, Claudia
2071 Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Thomopulos, Dimitri
2071 Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Tankov, Peter
2579 Centre de Recherche en Économie et Statistique [CREST]
Type
Article accepté pour publication ou publié
Abstract (EN)
We develop an open-source Python software integrating flexibility needs from Variable Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean and variance of the renewable production–demand ratio as proxies to balance services. Second, observations of VRE technologies being typically too short or nonexistent, the hourly demand and production are estimated from climate time series and fitted to available observations. We illustrate e4clim’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing different climate data sources and strategies and assessing the impact of climate variability and the robustness of the results.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.