• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Estimating Individual Treatment Effects throughCausal Populations Identification

Thumbnail
View/Open
ES2020-110.pdf (1.527Mb)
Date
2020
Dewey
Programmation, logiciels, organisation des données
Sujet
Machine Learning
Conference name
28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020)
Conference date
10-2020
Conference city
Brugges
Conference country
Belgium
URI
https://basepub.dauphine.fr/handle/123456789/21516
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Beji, Céline
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Benhamou, Éric
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Bon, Michaël
115536 autre
Yger, Florian
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Atif, Jamal
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Communication / Conférence
Abstract (EN)
Estimating the Individual Treatment Effect from observational data, defined as the difference between outcomes with and without treatment or intervention, while observing just one of both, is a challenging problems in causal learning. In this paper, we formulate this problem as an inference from hidden variables and enforce causal constraints based on a model of four exclusive causal populations. We propose a new version of the EM algorithm, coined as Expected-Causality-Maximization (ECM) algorithm and provide hints on its convergence under mild conditions. We compare our algorithm to baseline methods on synthetic and real-world data and discuss its performances.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.