• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On the Minimum Hitting Set of Bundles Problem

Gourvès, Laurent; Bampis, Evripidis; Angel, Eric (2009), On the Minimum Hitting Set of Bundles Problem, Theoretical Computer Science, 410, 45, p. 4534-4542. http://dx.doi.org/10.1016/j.tcs.2009.08.017

View/Open
mhsb.pdf (170.8Kb)
Type
Article accepté pour publication ou publié
Date
2009
Journal name
Theoretical Computer Science
Volume
410
Number
45
Publisher
Elsevier
Pages
4534-4542
Publication identifier
http://dx.doi.org/10.1016/j.tcs.2009.08.017
Metadata
Show full item record
Author(s)
Gourvès, Laurent
Bampis, Evripidis
Angel, Eric
Abstract (EN)
We consider a natural generalization of the classical minimum hitting set problem, the minimum hitting set of bundles problem (mhsb) which is defined as follows. We are given a set E={e1,e2,…,en}E={e1,e2,…,en} of nn elements. Each element eiei (i=1,…,ni=1,…,n) has a positive cost cici. A bundlebb is a subset of EE. We are also given a collection S={S1,S2,…,Sm}S={S1,S2,…,Sm} of mm sets of bundles. More precisely, each set SjSj (j=1,…,mj=1,…,m) is composed of g(j)g(j) distinct bundles View the MathML sourcebj1,bj2,…,bjg(j). A solution to mhsb is a subset E′⊆EE′⊆E such that for every Sj∈SSj∈S at least one bundle is covered, i.e. View the MathML sourcebjl⊆E′ for some l∈{1,2,…,g(j)}l∈{1,2,…,g(j)}. The total cost of the solution, denoted by C(E′)C(E′), is ∑{i∣ei∈E′}ci∑{i∣ei∈E′}ci. The goal is to find a solution with a minimum total cost. We give a deterministic View the MathML sourceN(1−(1−1N)M)-approximation algorithm, where NN is the maximum number of bundles per set and MM is the maximum number of sets in which an element can appear. This is roughly speaking the best approximation ratio that we can obtain, since by reducing mhsb to the vertex cover problem, it implies that mhsb cannot be approximated within 1.361.36 when N=2N=2 and N−1−ϵN−1−ϵ when N≥3N≥3. It has to be noticed that the application of our algorithm in the case of the min kk-sat problem matches the best known approximation ratio.
Subjects / Keywords
Minimum hitting set; Min k-sat; Approximation algorithm

Related items

Showing items related by title and author.

  • Thumbnail
    On the Minimum Hitting Set of Bundles Problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2008) Communication / Conférence
  • Thumbnail
    On the hitting set of bundles problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2007) Document de travail / Working paper
  • Thumbnail
    Approximating the Pareto Curve with Local Search for the Bicriteria TSP (1, 2) Problem (extended abstract) 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2003) Communication / Conférence
  • Thumbnail
    Approximating the Pareto curve with local search for the bicriteria TSP(1,2) problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2004) Article accepté pour publication ou publié
  • Thumbnail
    Algorithmes approchés pour le problème du voyageur de commerce multicritère 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent; Monnot, Jérôme (2005) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo