Show simple item record

dc.contributor.authorLaffond, Gilbert
dc.contributor.authorLaine, Jean
dc.contributor.authorSanver, Remzi
dc.date.accessioned2021-01-04T12:01:14Z
dc.date.available2021-01-04T12:01:14Z
dc.date.issued2020
dc.identifier.issn0176-1714
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/21416
dc.language.isoenen
dc.subjectPreferencesen
dc.subjectNeutralismen
dc.subjectNeutralityen
dc.subjectPropertyen
dc.subject.ddc003en
dc.titleMetrizable preferences over preferencesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenA hyper-preference is a weak order over all linear orders defined over a finite set A of alternatives. An extension rule associates with each linear order p over A a hyper-preference. The well-known Kemeny extension rule ranks all linear orders over A according to their Kemeny distance to p. More generally, an extension rule is metrizable iff it extends p to a hyper-preference consistent with a distance criterion. We characterize the class of metrizable extension rules by means of two properties, namely self-consistency and acyclicity across orders. Moreover, we provide a characterization of neutral and metrizable extension rules, based on a simpler formulation of acyclicity across orders. Furthermore, we establish the logical incompatibility between neutrality, metrizability and strictness. However, we show that these three conditions are pairwise logically compatible.en
dc.relation.isversionofjnlnameSocial Choice and Welfare
dc.relation.isversionofjnlvol55en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2020-06
dc.relation.isversionofjnlpages177-191en
dc.relation.isversionofdoi10.1007/s00355-019-01235-0en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelRecherche opérationnelleen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2021-01-04T11:54:09Z
hal.person.labIds491794
hal.person.labIds186209
hal.person.labIds989


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record