• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Numerical representation of PQI interval orders

Ngo The, An; Tsoukiàs, Alexis (2005), Numerical representation of PQI interval orders, Discrete Applied Mathematics, 147, 1, p. 125-146. http://dx.doi.org/10.1016/j.dam.2004.06.026

View/Open
pqirep12.pdf (233.4Kb)
Type
Article accepté pour publication ou publié
Date
2005
Journal name
Discrete Applied Mathematics
Volume
147
Number
1
Publisher
Elsevier
Pages
125-146
Publication identifier
http://dx.doi.org/10.1016/j.dam.2004.06.026
Metadata
Show full item record
Author(s)
Ngo The, An
Tsoukiàs, Alexis cc
Abstract (EN)
We consider the problem of numerical representations of PQI interval orders. A preference structure on a finite set A with three relations P,Q,I standing for “strict preference”, “weak preference” and “indifference”, respectively, is defined as a PQI interval order iff there exists a representation of each element of A by an interval in such a way that, P holds when one interval is completely to the right of the other, I holds when one interval is included to the other and Q holds when one interval is to the right of the other, but they do have a non-empty intersection (Q modelling the hesitation between P and I). Only recently, necessary and sufficient conditions for a PQI preference structure to be identified as a PQI interval order have been established. In this paper, we are interested in the problem of constructing a numerical representation of a PQI interval order and possibly a minimal one. We present two algorithms, the first one in O(n2) aimed to determine a general numerical representation, and the second one, in O(n), aimed to minimise such a representation.
Subjects / Keywords
Intervals; PQI interval orders; Numerical representation; Minimal representation

Related items

Showing items related by title and author.

  • Thumbnail
    A polynomial time algorithm to detect PQI interval orders 
    Vincke, Philippe; Tsoukiàs, Alexis; Ngo The, An (2000) Article accepté pour publication ou publié
  • Thumbnail
    A characterization of PQI interval orders 
    Vincke, Philippe; Tsoukiàs, Alexis (2003) Article accepté pour publication ou publié
  • Thumbnail
    Positive and Negative Reasons in Interval Comparisons: Valued PQI Interval Orders 
    Ozturk, Meltem; Tsoukiàs, Alexis (2004) Communication / Conférence
  • Thumbnail
    Preference representation with 3-points intervals 
    Tsoukiàs, Alexis; Ozturk, Meltem (2006) Communication / Conférence
  • Thumbnail
    On the concept of Decision Aiding Process: an Operational Perspective 
    Tsoukiàs, Alexis (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo