
Acyclic Gambling Game
Laraki, Rida; Renault, Jérôme (2017), Acyclic Gambling Game, Mathematics of Operations Research, 45, 4, p. 1193-1620. 10.2139/ssrn.3187425
View/ Open
Type
Article accepté pour publication ou publiéDate
2017Journal name
Mathematics of Operations ResearchVolume
45Number
4Publisher
INFORMS
Pages
1193-1620
Publication identifier
Metadata
Show full item recordAuthor(s)
Laraki, Rida
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Renault, Jérôme
Abstract (EN)
We consider 2-player zero-sum stochastic games where each player controls his own state variable living in a compact metric space. The terminology comes from gambling problems where the state of a player represents its wealth in a casino. Under natural assumptions (such as continuous running payoff and non expansive transitions), we consider for each discount factor the value vλ of the λ-discounted stochastic game and investigate its limit when λ goes to 0 (players are more and more patient). We show that under a new acyclicity condition, the limit exists and is characterized as the unique solution of a system of functional equations: the limit is the unique continuous excessive and depressive function such that each player, if his opponent does not move, can reach the zone when the current payoff is at least as good than the limit value, without degrading the limit value. The approach generalizes and provides a new viewpoint on the Mertens-Zamir system coming from the study of zero-sum repeated games with lack of information on both sides. A counterexample shows that under a slightly weaker notion of acyclicity, convergence of (vλ) may fail.Subjects / Keywords
Markov Decision Processes; Zero-Sum Stochastic Games; Asymptotic Value; Gambling Houses; Mertens-Zamir System; Splitting Games; PersuasionRelated items
Showing items related by title and author.
-
Laraki, Rida; Renault, Jérôme; Sorin, Sylvain (2019) Ouvrage
-
Hofbauer, Josef; Laraki, Rida; Renault, Jérôme (2014) Article accepté pour publication ou publié
-
Hadikhanloo, Saeed; Laraki, Rida; Mertikopoulos, Panayotis; Sorin, Sylvain (2021) Document de travail / Working paper
-
Bich, Philippe; Laraki, Rida (2017) Article accepté pour publication ou publié
-
Laraki, Rida; Mertikopoulos, Panayotis (2015) Article accepté pour publication ou publié