• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sparse and low-rank multivariate Hawkes processes

Bacry, Emmanuel; Bompaire, Martin; Gaïffas, Stéphane; Muzy, Jean-François (2020), Sparse and low-rank multivariate Hawkes processes, Journal of Machine Learning Research, 21, 50, p. 1 - 32

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-02735273
Date
2020
Journal name
Journal of Machine Learning Research
Volume
21
Number
50
Publisher
MIT Press
Pages
1 - 32
Metadata
Show full item record
Author(s)
Bacry, Emmanuel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bompaire, Martin
Criteo AI Lab
Gaïffas, Stéphane
Département de Mathématiques et Applications - ENS Paris [DMA]
Laboratoire de Probabilités, Statistique et Modélisation [LPSM (UMR_8001)]
Muzy, Jean-François
Sciences pour l'environnement [SPE]
Abstract (EN)
We consider the problem of unveiling the implicit network structure of node interactions (such as user interactions in a social network), based only on high-frequency timestamps. Our inference is based on the minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by L1 and trace norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for matrix martingales in continuous time with observable variance, which is a result of independent interest and a broad range of possible applications since it extends to matrix martingales former results restricted to the scalar case. A consequence of our analysis is the construction of sharply tuned L1 and trace-norm penalizations, that leads to a data-driven scaling of the variability of information available for each users. Numerical experiments illustrate the significant improvements achieved by the use of such data-driven penalizations.
Subjects / Keywords
Hawkes processes; Sparsity; Low-Rank; Random matrices; Data-driven concentration

Related items

Showing items related by title and author.

  • Thumbnail
    Uncovering Causality from Multivariate Hawkes Integrated Cumulants 
    Achab, Massil; Bacry, Emmanuel; Gaïffas, Stéphane; Mastromatteo, Iacopo; Muzy, Jean-François (2017) Article accepté pour publication ou publié
  • Thumbnail
    Some limit theorems for Hawkes processes and application to financial statistics 
    Muzy, Jean-François; Delattre, Sylvain; Hoffmann, Marc; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Concentration inequalities for matrix martingales in continuous time 
    Bacry, Emmanuel; Muzy, Jean-François; Gaïffas, Stéphane (2018) Article accepté pour publication ou publié
  • Thumbnail
    Queue-reactive Hawkes models for the order flow 
    Wu, Peng; Rambaldi, Marcello; Muzy, Jean-François; Bacry, Emmanuel (2019) Document de travail / Working paper
  • Thumbnail
    Modelling microstructure noise with mutually exciting point processes 
    Muzy, Jean-François; Hoffmann, Marc; Delattre, Sylvain; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo