The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities
hal.structure.identifier | Department of Mathematics (Caltech) | |
dc.contributor.author | Frank, Rupert L. | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Gontier, David
HAL ID: 11393 ORCID: 0000-0001-8648-7910 | |
hal.structure.identifier | ||
dc.contributor.author | Lewin, Mathieu
HAL ID: 1466 ORCID: 0000-0002-1755-0207 | |
dc.date.accessioned | 2020-10-26T10:37:48Z | |
dc.date.available | 2020-10-26T10:37:48Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/21165 | |
dc.language.iso | en | en |
dc.subject | Lieb-Thirring | en |
dc.subject | Schrödinger equation | en |
dc.subject.ddc | 520 | en |
dc.title | The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We prove that the best Lieb-Thirring constant when the eigenvalues of a Schrödinger operator −Δ+V(x) are raised to the power κ≥1 (κ≥3/2 in 1D and κ>1 in 2D) can never be attained for a potential having finitely many eigenvalues. We thereby disprove a conjecture of Lieb and Thirring in 2D that the best constant is given by the one-bound state case for 1<κ≲1.165. In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function. | en |
dc.identifier.citationpages | 43 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-02477148 | en |
dc.subject.ddclabel | Sciences connexes (physique, astrophysique) | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2020-10-26T10:33:25Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |