
The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020), The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities. https://basepub.dauphine.fr/handle/123456789/21165
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-02477148Date
2020Series title
Cahier de recherche CEREMADEPages
43
Metadata
Show full item recordAuthor(s)
Frank, Rupert L.Department of Mathematics (Caltech)
Gontier, David

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu

Abstract (EN)
We prove that the best Lieb-Thirring constant when the eigenvalues of a Schrödinger operator −Δ+V(x) are raised to the power κ≥1 (κ≥3/2 in 1D and κ>1 in 2D) can never be attained for a potential having finitely many eigenvalues. We thereby disprove a conjecture of Lieb and Thirring in 2D that the best constant is given by the one-bound state case for 1<κ≲1.165. In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.Subjects / Keywords
Lieb-Thirring; Schrödinger equationRelated items
Showing items related by title and author.
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Article accepté pour publication ou publié
-
Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2021) Document de travail / Working paper
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
-
Gontier, David; Lewin, Mathieu; Nazar, Faizan Q.; Abbad, Narima (2021) Article accepté pour publication ou publié
-
Frank, Rupert; Laptev, Ari; Lewin, Mathieu; Seiringer, Robert (2022) Ouvrage