• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Deep Importance Sampling

Virrion, Benjamin (2020), Deep Importance Sampling. https://basepub.dauphine.fr/handle/123456789/21160

View/Open
Virrion_Deep_Importance_Sampling.pdf (2.430Mb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02887331
Date
2020
Series title
Cahier de recherche du CEREMADE
Pages
47
Metadata
Show full item record
Author(s)
Virrion, Benjamin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We present a generic path-dependent importance sampling algorithm where the Girsanov induced change of probability on the path space is represented by a sequence of neural networks taking the past of the trajectory as an input. At each learning step, the neural networks' parameters are trained so as to reduce the variance of the Monte Carlo estimator induced by this change of measure. This allows for a generic path dependent change of measure which can be used to reduce the variance of any path-dependent financial payoff. We show in our numerical experiments that for payoffs consisting of either a call, an asymmetric combination of calls and puts, a symmetric combination of calls and puts, a multi coupon autocall or a single coupon autocall, we are able to reduce the variance of the Monte Carlo estimators by factors between 2 and 9. The numerical experiments also show that the method is very robust to changes in the parameter values, which means that in practice, the training can be done offline and only updated on a weekly basis.
Subjects / Keywords
Path-Dependence; Importance Sampling; Neural Networks

Related items

Showing items related by title and author.

  • Thumbnail
    Importance Sampling combiné avec les algorithmes MCMC dans le cas d'estimations répétées 
    Gajda, Dorota; Guihenneuc-Jouyaux, Chantal; Rousseau, Judith; Mengersen, Kerrie; Nur, Darfiana (2009) Communication / Conférence
  • Thumbnail
    Mixture models, latent variables and partitioned importance sampling 
    Casella, George; Robert, Christian P.; Wells, Martin T. (2004) Article accepté pour publication ou publié
  • Thumbnail
    Recentered importance sampling with applications to Bayesian model validation 
    Nur, Darfiana; Mengersen, Kerrie; McVinish, Ross (2013) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive Importance Sampling in General Mixture Classes 
    Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
  • Thumbnail
    Importance sampling methods for Bayesian discrimination between embedded models 
    Marin, Jean-Michel; Robert, Christian P. (2010) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo