dc.contributor.author | Fonlupt, Jean | |
dc.contributor.author | Mahjoub, Ali Ridha | |
dc.date.accessioned | 2009-10-05T09:26:42Z | |
dc.date.available | 2009-10-05T09:26:42Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/2112 | |
dc.language.iso | en | en |
dc.subject | Polytope | en |
dc.subject | Cut - 2-edge connected graph | en |
dc.subject | Critical extreme point | en |
dc.subject.ddc | 519 | en |
dc.title | Critical extreme points of the 2-edge connected subgraph polytope | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Université Blaise Pascal Clermont II;France | |
dc.contributor.editoruniversityother | Université Pierre et Marie Curie;France | |
dc.description.abstracten | In this paper we study the extreme points of the polytope P(G), the linear relaxation of the 2-edge connected spanning subgraph polytope of a graph G. We introduce a partial ordering on the extreme points of P(G) and give necessary conditions for a non-integer extreme point of P(G) to be minimal with respect to that ordering. We show that, if X is a non-integer minimal extreme point of P(G), then G and X can be reduced, by means of some reduction operations, to a graph G' and an extreme point X of P(G') where G' and X'satisfy some simple properties. As a consequence we obtain a characterization of the perfectly 2-edge connected graphs, the graphs for which the polytope P(G) is integral. | en |
dc.relation.isversionofjnlname | Mathematical Programming | |
dc.relation.isversionofjnlvol | 105 | en |
dc.relation.isversionofjnlissue | 2-3 | en |
dc.relation.isversionofjnldate | 2006-02 | |
dc.relation.isversionofjnlpages | 289-310 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s10107-005-0654-8 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer Berlin | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |