Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorIacobucci, Alessandra
HAL ID: 739701
ORCID: 0000-0003-4025-3195
*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorOlla, Stefano
HAL ID: 18345
ORCID: 0000-0003-0845-1861
*
hal.structure.identifierCentre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique [CERMICS]
dc.contributor.authorStoltz, Gabriel*
dc.date.accessioned2020-10-14T13:33:15Z
dc.date.available2020-10-14T13:33:15Z
dc.date.issued2020
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/21115
dc.language.isoenen
dc.subjectThermo-mechanical
dc.subject.ddc520en
dc.titleThermo-mechanical transport in rotor chains
dc.typeDocument de travail / Working paper
dc.description.abstractenWe study the macroscopic profiles of temperature and angular momentum in the stationary state of chains of rotors under a thermo-mechanical forcing applied at the boundaries. These profiles are solutions of a system of diffusive partial differential equations with boundary conditions determined by the thermo-mechanical forcing. Instead of expensive Monte Carlo simulations of the underlying microscopic dynamics, we perform extensive numerical simulations based on a finite difference method for the system of partial differential equations describing the macroscopic steady state. We first present a formal derivation of these stationary equations based on a linear response argument and local equilibrium assumptions. We then study various properties of the solutions to these equations. This allows to characterize the regime of parameters leading to uphill diffusion, a situation where the energy flows in the direction of the gradient of temperature; and to identify regions of parameters corresponding to a negative thermal conductivity (i.e. a positive linear response to a gradient of temperature). The agreement with previous results obtained by numerical simulation of the microscopic physical system confirms the validity of the macroscopic equations we derive.
dc.identifier.citationpages32
dc.relation.ispartofseriestitleCahier de recherche CEREMADE
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02904454
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.date.updated2020-12-09T15:02:23Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record