• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

On S-packing edge-colorings of cubic graphs

Thumbnail
Date
2019
Link to item file
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01651260
Dewey
Principes généraux des mathématiques
Sujet
Cubic graph; Packing chromatic index; S-packing chromatic index; Snark; d,-distance coloring
Journal issue
Discrete Applied Mathematics
Volume
259
Publication date
04-2019
Article pages
63-75
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.dam.2018.12.035
URI
https://basepub.dauphine.fr/handle/123456789/21022
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Gastineau, Nicolas
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Togni, Olivier
Type
Article accepté pour publication ou publié
Abstract (EN)
Given a non-decreasing sequence S = (s 1,s 2,. .. ,s k) of positive integers, an S-packing edge-coloring of a graph G is a partition of the edge set of G into k subsets {X 1 ,X 2,. .. ,X k } such that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e ′ ∈ X i is at least s i + 1. This paper studies S-packing edge-colorings of cubic graphs. Among other results, we prove that cubic graphs having a 2-factor are (1,1,1,3,3)-packing edge-colorable, (1,1,1,4,4,4,4,4)-packing edge-colorable and (1,1,2,2,2,2,2)-packing edge-colorable. We determine sharper results for cubic graphs of bounded oddness and 3-edge-colorable cubic graphs and we propose many open problems.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.