• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Delta-distance: A family of dissimilarity metrics between images represented by multi-level feature vectors

Thumbnail
Date
2006
Dewey
Organisation des données
Sujet
Similarity of image segments; Distance between quad/quin or nona-trees; Content-based image retrieval; Image database
Journal issue
Information Retrieval
Volume
9
Number
6
Publication date
2006
Article pages
633-655
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s10791-006-9011-7
URI
https://basepub.dauphine.fr/handle/123456789/2102
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Jomier, Geneviève
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Manouvrier, Maude
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Rukoz, Marta
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Article accepté pour publication ou publié
Abstract (EN)
This article presents the Δ-distance, a family of distances between images recursively decomposed into segments and represented by multi-level feature vectors. Such a structure is a quad, a quin or a nona-tree resulting from a fixed and arbitrary image partition or from an image segmentation process. It handles positional information of image features (e.g. color, texture or shape). Δ-distance is the generalized form of dissimilarity measures between multi-level feature vectors. Using different weights on tree nodes and different distances between nodes, distances between trees or visual similarity between images can be computed based on the general definition of Δ. In this article, we present three Δ-based distance families: two families of distances between tree structures, called {T}-distance{T}for Tree) and {S}-distance for Segment), and a family of visual distances between images, called {V}for Visual). The {V)-distance visually compares two images using their tree representation and the other two distances compare the tree structures resulting from image segmentation. Moreover, we show how existing distances between multi-level feature vectors appear to be particular cases of the Δ-distance.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.