Show simple item record

dc.contributor.authorBouyssou, Denis
dc.contributor.authorPirlot, Marc
dc.date.accessioned2009-10-03T09:30:58Z
dc.date.available2009-10-03T09:30:58Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/2101
dc.language.isoenen
dc.subjectNontransitive preferencesen
dc.subjectCardinal Coordinate Independenceen
dc.subjectDecision under uncertaintyen
dc.subject.ddc511en
dc.subject.classificationjelD81en
dc.titleA note on Wakker's cardinal coordinate independenceen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherFaculté Polytechnique de Mons;Belgique
dc.description.abstractenPeter P. Wakker has forcefully shown the importance for decision theory of a condition that he called “Cardinal Coordinate Independence” (CCI). Indeed, when the outcome space is rich, he proved that, for continuous weak orders, this condition fully characterizes the Subjective Expected Utility (SEU) model with a finite number of states. He has furthermore explored in depth how this condition can be weakened in order to arrive at characterizations of Choquet Expected Utility and Cumulative Prospect Theory. This note studies the consequences of this condition in the absence of any transitivity assumption. Complete preference relations satisfying Cardinal Coordinate Independence are shown to be already rather well-behaved. Under a suitable necessary order denseness assumption, they may always be represented using a simple numerical model.en
dc.relation.isversionofjnlnameMathematical Social Sciences
dc.relation.isversionofjnlvol48en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2004
dc.relation.isversionofjnlpages11-22en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.mathsocsci.2004.01.001en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelPrincipes généraux des mathématiquesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record