• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Bi-objective CSO for Big Data ScientificWorkflows scheduling in the Cloud: case of LIGO workflow

Thumbnail
Ouvrir
ICSOFT_2020_31_CR.pdf (240.1Kb)
Date
2020
Indexation documentaire
Programmation, logiciels, organisation des données
Subject
Scientific Workflow; Data intensive; Cat Swarm Optimization; Multi-objective Scheduling; LIGO
Titre du colloque
15th International Conference on Software Technologies (ICSOFT 2020)
Date du colloque
07-2020
Ville du colloque
Paris
Pays du colloque
France
Titre de l'ouvrage
Proceedings of the 15th International Conference on Software Technologies - Volume 1: ICSOFT
Nom de l'éditeur
SciTePress
ISBN
978-989-758-443-5
URI
https://basepub.dauphine.fr/handle/123456789/20969
Collections
  • LAMSADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Bousselmin, K.
Ben Hamida, Sana
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Rukoz, Marta
989 Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Type
Communication / Conférence
Nombre de pages du document
615-624
Résumé en anglais
Scientific workflows are used to model scalable, portable, and reproducible big data analyses and scientific experiments with low development costs. To optimize their performances and ensure data resources efficiency, scientific workflows handling big volumes of data need to be executed on scalable distributed environments like the Cloud infrastructure services. The problem of scheduling such workflows is known as an NP-complete problem. It aims to find optimal mapping task-to-resource and data-to-storage resources in order to meet end user’s quality of service objectives, especially minimizing the overall makespan or the financial cost of the workflow. In this paper, we formulate the problem of scheduling big data scientific workflows as bi-objective optimization problem that aims to minimize both the makespan and the cost of the workflow. The formulated problem is then resolved using our proposed Bi-Objective Cat Swarm Optimization algorithm (BiO-CSO)which is an extension of the bio-inspired algorithm CSO. The extension consists of adapting the algorithm to solve multi-objective discrete optimization problems. Our application case is the LIGO Inspiral workflowwhich is a CPU and Data intensive workflow used to generate and analyze gravitational waveforms from data collected during the coalescing of compact binary systems. The performance of the proposed method is then compared to that of the multi-objective Particle Swarm Optimization (PSO) proven to be effective for scientific workflows scheduling. The experimental results show that our algorithm BiO-CSO performs better than themulti-objective PSO since it provides more and better final scheduling solutions.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.