• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs

Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Giorgios (2016), A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs, in Kranakis, Evangelos; Navarro, Gonzalo; Chávez, Edgar, LATIN 2016: Theoretical Informatics, Springer, p. 235-248. 10.1007/978-3-662-49529-2_18

View/Open
Chapter_A0821-Ratio.pdf (293.0Kb)
Type
Communication / Conférence
Date
2016
Conference title
12th Latin American Theoretical Informatics Symposium (LATIN 2016)
Conference date
2016-04
Conference city
Ensenada
Conference country
Mexico
Book title
LATIN 2016: Theoretical Informatics
Book author
Kranakis, Evangelos; Navarro, Gonzalo; Chávez, Edgar
Publisher
Springer
ISBN
978-3-662-49529-2
Pages
235-248
Publication identifier
10.1007/978-3-662-49529-2_18
Metadata
Show full item record
Author(s)
Bonnet, Edouard cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Escoffier, Bruno
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Stamoulis, Giorgios
Abstract (EN)
We study the polynomial time approximation of the max k-vertex cover problem in bipartite graphs and propose a purely combinatorial algorithm that beats the only such known algorithm, namely the greedy approach. We present a computer-assisted analysis of our algorithm, establishing that the worst case approximation guarantee is bounded below by 0.821.
Subjects / Keywords
Approximation Guarantee; Computer-assisted Analysis; Semiregular Bipartite Graph; Generalized Reduced Gradient (GRG); Approximation Ratio

Related items

Showing items related by title and author.

  • Thumbnail
    Purely combinatorial approximation algorithms for maximum k -vertex cover in bipartite graphs 
    Bonnet, Edouard; Escoffier, Bruno; Paschos, Vangelis; Stamoulis, Georgios (2018) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized exact and approximation algorithms for maximum k-set cover and related satisfiability problems 
    Bonnet, Édouard; Paschos, Vangelis; Sikora, Florian (2016) Article accepté pour publication ou publié
  • Thumbnail
    Multi-parameter Analysis for Local Graph Partitioning Problems: Using Greediness for Parameterization 
    Bonnet, Édouard; Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2015) Article accepté pour publication ou publié
  • Thumbnail
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
  • Thumbnail
    Probabilistic graph-coloring in bipartite and split graphs 
    Murat, Cécile; Escoffier, Bruno; Della Croce, Federico; Bourgeois, Nicolas; Paschos, Vangelis (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo