• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms

Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2014), Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms, Theoretical Computer Science, 560, 2, p. 147-157. 10.1016/j.tcs.2014.10.039

View/Open
Approximating_MAX.pdf (498.0Kb)
Type
Article accepté pour publication ou publié
Date
2014
Journal name
Theoretical Computer Science
Volume
560
Number
2
Publisher
Elsevier
Pages
147-157
Publication identifier
10.1016/j.tcs.2014.10.039
Metadata
Show full item record
Author(s)
Escoffier, Bruno
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tourniaire, Emeric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study approximation of the max sat problem by moderately exponential algorithms. The general goal of the issue of moderately exponential approximation is to catch-up on polynomial inapproximability, by providing algorithms achieving, with worst-case running times importantly smaller than those needed for exact computation, approximation ratios unachievable in polynomial time. We develop several approximation techniques that can be applied to max sat in order to get approximation ratios arbitrarily close to 1.
Subjects / Keywords
Exponential time algorithms; Approximation algorithms; Max SAT

Related items

Showing items related by title and author.

  • Thumbnail
    Approximating MAX SAT by moderately exponential algorithms 
    Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Communication / Conférence
  • Thumbnail
    Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms 
    Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
  • Thumbnail
    Moderate exponential time approximation and branching algorithms 
    Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Document de travail / Working paper
  • Thumbnail
    Using greediness for parameterization: the case of max and min (k, n − k)-cut 
    Bonnet, Édouard; Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Document de travail / Working paper
  • Thumbnail
    Efficient approximation of MIN SET COVER by moderately exponential algorithms 
    Paschos, Vangelis; Escoffier, Bruno; Bourgeois, Nicolas (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo