Show simple item record

dc.contributor.authorGontier, David
dc.date.accessioned2020-06-18T10:39:43Z
dc.date.available2020-06-18T10:39:43Z
dc.date.issued2020-04
dc.identifier.issn0022-2488
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20887
dc.language.isoenen
dc.subjectOperator theoryen
dc.subjectFunctional analysisen
dc.subjectHellmann Feynman theoremen
dc.subjectDirac equationen
dc.subjectHill equationen
dc.subjectQuantum mechanical operatorsen
dc.subject.ddc515en
dc.titleEdge states in ordinary differential equations for dislocationsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this article, we study Schrödinger operators on the real line, when the external potential represents a dislocation in a periodic medium. We study how the spectrum varies with the dislocation parameter. We introduce several integer-valued indices, including the Chern number for bulk indices, and various spectral flows for edge indices. We prove that all these indices coincide, providing a proof of a bulk-edge correspondence in this case. The study is also made for dislocations in Dirac models on the real line. We prove that 0 is always an eigenvalue of such operators.en
dc.relation.isversionofjnlnameJournal of Mathematical Physics
dc.relation.isversionofjnlvol61en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2020-04
dc.relation.isversionofdoi10.1063/1.5128886en
dc.relation.isversionofjnlpublisherAmerican Institute of Physicsen
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2020-06-18T10:29:58Z
hal.person.labIds60
hal.faultCodeInternal server error: Test collection CEREMADE-DAUPHINE not found


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record