Show simple item record

dc.contributor.authorHartarsky, Ivailo
dc.contributor.authorMarêché, Laure
dc.contributor.authorToninelli, Cristina
dc.date.accessioned2020-06-11T12:15:32Z
dc.date.available2020-06-11T12:15:32Z
dc.date.issued2020-06
dc.identifier.issn0178-8051
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20878
dc.language.isoenen
dc.subjectKinetically constrained modelsen
dc.subjectBootstrap percolationen
dc.subjectUniversalityen
dc.subjectGlauber dynamicsen
dc.subjectSpectral gapen
dc.subject.ddc519en
dc.titleUniversality for critical kinetically constrained models: infinite number of stable directionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenKinetically constrained models (KCM) are reversible interacting particle systems on Zd with continuous-time constrained Glauber dynamics. They are a natural non-monotone stochastic version of the family of cellular automata with random initial state known as U-bootstrap percolation. KCM have an interest in their own right, owing to their use for modelling the liquid-glass transition in condensed matter physics. In two dimensions there are three classes of models with qualitatively different scaling of the infection time of the origin as the density of infected sites vanishes. Here we study in full generality the class termed ‘critical’. Together with the companion paper by Hartarsky et al. (Universality for critical KCM: finite number of stable directions. arXiv e-prints arXiv:1910.06782, 2019) we establish the universality classes of critical KCM and determine within each class the critical exponent of the infection time as well as of the spectral gap. In this work we prove that for critical models with an infinite number of stable directions this exponent is twice the one of their bootstrap percolation counterpart. This is due to the occurrence of ‘energy barriers’, which determine the dominant behaviour for these KCM but which do not matter for the monotone bootstrap dynamics. Our result confirms the conjecture of Martinelli et al. (Commun Math Phys 369(2):761–809. ), who proved a matching upper bound.en
dc.relation.isversionofjnlnameProbability Theory and Related Fields
dc.relation.isversionofjnldate2020
dc.relation.isversionofdoi10.1007/s00440-020-00976-9en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2020-06-11T12:11:40Z
hal.person.labIds60$$$66
hal.person.labIds1004954
hal.person.labIds60
hal.faultCodeInternal server error: Test collection CEREMADE-DAUPHINE not found


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record