Show simple item record

dc.contributor.authorChen, Da
dc.contributor.authorMirebeau, Jean-Marie
dc.contributor.authorCohen, Laurent D.
dc.date.accessioned2020-06-11T09:10:22Z
dc.date.available2020-06-11T09:10:22Z
dc.date.issued2016
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20873
dc.language.isoenen
dc.subjectFinsler Geodesicsen
dc.subject.ddc515en
dc.titleFinsler Geodesic Evolution Model for Region based Active Contoursen
dc.typeCommunication / Conférence
dc.description.abstractenIn this paper, we present a new deformable model for image segmentation by building the connection between the region based active contours energy and the geodesic energy via a Finsler metric. Basically, we solve the region based active contours energy minimization problem under a nonlinear Eikonal equation framework with respect to a Finsler metric. By sampling a set of control points from the closed active contour in clockwise order, the active contours evolution problem is turned to find a collection of minimal curves joining all the control points. These minimal curves can be obtained by solving the Finsler metric based Eikonal equation. Benefiting from the well established numerical solver of the Eikonal PDE, named fast marching algorithm, our model can obtain a fast numerical solution.en
dc.identifier.citationpages13en
dc.identifier.urlsitehttps://dx.doi.org/10.5244/C.30.22en
dc.subject.ddclabelAnalyseen
dc.relation.conftitleBMVC 2016en
dc.relation.confdate2016-09
dc.relation.confcityYorken
dc.relation.confcountryUnited Kingdomen
dc.relation.forthcomingnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2020-06-11T09:05:51Z
hal.person.labIds60
hal.person.labIds60
hal.person.labIds60


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record