Show simple item record

dc.contributor.authorHarutyunyan, Ararat
dc.contributor.authorLe, Tien-Nam
dc.contributor.authorNewman, Alantha
dc.contributor.authorThomassé, Stéphan
dc.date.accessioned2020-05-15T09:03:04Z
dc.date.available2020-05-15T09:03:04Z
dc.date.issued2018
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20742
dc.language.isoenen
dc.subjectGraphs and digraphsen
dc.subjectDominationen
dc.subjectFractional dominationen
dc.subject.ddc511en
dc.titleDomination and fractional domination in digraphsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we investigate the relation between the (fractional) domination number of a digraph G and the independence number of its underlying graph, denoted by α(G). More precisely, we prove that every digraph G has fractional domination number at most 2α(G), and every directed triangle-free digraph G has domination number at most α(G)⋅α(G)!. The first bound is sharp.en
dc.relation.isversionofjnlnameThe Electronic Journal of Combinatorics
dc.relation.isversionofjnlvol25en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2018-08
dc.relation.isversionofjnlpages3.32en
dc.relation.isversionofdoi10.37236/7211en
dc.subject.ddclabelPrincipes généraux des mathématiquesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2020-05-15T08:58:29Z
hal.person.labIds989
hal.person.labIds56663
hal.person.labIds74240
hal.person.labIds35418$$$56663


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record