Show simple item record

dc.contributor.authorMahjoub, Meriem
dc.contributor.authorDiarrassouba, Ibrahima
dc.contributor.authorMahjoub, Ali Ridha
dc.contributor.authorTaktak, Raouia
dc.date.accessioned2020-05-14T11:00:18Z
dc.date.available2020-05-14T11:00:18Z
dc.date.issued2017
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20736
dc.language.isoenen
dc.subjectk-node-connected graphen
dc.subjectPolytopeen
dc.subjectFacetsen
dc.subjectSeparationen
dc.subjectBranch-and-Cuten
dc.subject.ddc005en
dc.titleThe survivable k-node-connected network design problem: Valid inequalities and Branch-and-Cuten
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper we consider the k-node-connected subgraph problem. We propose an integer linear programming formulation for the problem and investigate the associated polytope. We introduce further classes of valid inequalities and discuss their facial aspect. We also devise separation routines, investigate the structural properties of the linear relaxation and discuss some reduction operations that can be used in a preprocessing phase for the separation. Using these results, we devise a Branch-and-Cut algorithm and present some computational results.en
dc.relation.isversionofjnlnameComputers and Industrial Engineering
dc.relation.isversionofjnlvol112en
dc.relation.isversionofjnldate2017-10
dc.relation.isversionofjnlpages690-705en
dc.relation.isversionofdoi10.1016/j.cie.2017.03.007en
dc.subject.ddclabelProgrammation, logiciels, organisation des donnéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2020-05-14T10:56:59Z
hal.person.labIds989
hal.person.labIds87
hal.person.labIds989
hal.person.labIds136703


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record