k-node-disjoint hop-constrained survivable networks: polyhedral analysis and branch and cut
hal.structure.identifier | Laboratoire de Mathématiques Appliquées du Havre [LMAH] | |
dc.contributor.author | Diarrassouba, Ibrahima
HAL ID: 745402 | * |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Mahjoub, Meriem | * |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Mahjoub, Ali Ridha | * |
hal.structure.identifier | Universite Bilkent [Ankara] | |
dc.contributor.author | Yaman, Hande | * |
dc.date.accessioned | 2020-05-13T15:10:25Z | |
dc.date.available | 2020-05-13T15:10:25Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20732 | |
dc.language.iso | en | en |
dc.subject | k-node-disjoint hop-constrained paths | en |
dc.subject | Survivable network | en |
dc.subject | Polytope | en |
dc.subject | Valid inequalities | en |
dc.subject | Facets | en |
dc.subject | Separation | en |
dc.subject | Branch-and-cut | en |
dc.subject.ddc | 511 | en |
dc.title | k-node-disjoint hop-constrained survivable networks: polyhedral analysis and branch and cut | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | Given a graph with weights on the edges, a set of origin and destination pairs of nodes, and two integers L ≥ 2 and k ≥ 2, the k-node-disjoint hop-constrained network design problem is to find a minimum weight subgraph of G such that between every origin and destination there exist at least k node-disjoint paths of length at most L. In this paper, we consider this problem from a polyhedral point of view. We propose an integer linear programming formulation for the problem for L ∈{2,3} and arbitrary k, and investigate the associated polytope. We introduce new valid inequalities for the problem for L ∈{2,3,4}, and give necessary and sufficient conditions for these inequalities to be facet defining. We also devise separation algorithms for these inequalities. Using these results, we propose a branch-and-cut algorithm for solving the problem for both L = 3 and L = 4 along with some computational results. | en |
dc.relation.isversionofjnlname | Annals of Telecommunications - annales des télécommunications | |
dc.relation.isversionofjnlvol | 73 | en |
dc.relation.isversionofjnldate | 2018-01 | |
dc.relation.isversionofjnlpages | 5-28 | en |
dc.relation.isversionofdoi | 10.1007/s12243-017-0622-3 | en |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2020-05-13T15:03:27Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |