Show simple item record

dc.contributor.authorDuong, Giao Ky
dc.contributor.authorNouaili, Nejla
dc.contributor.authorZaag, Hatem
dc.date.accessioned2020-05-12T11:30:56Z
dc.date.available2020-05-12T11:30:56Z
dc.date.issued2020
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20717
dc.language.isoenen
dc.subjectBlow-up profileen
dc.subjectComplex Ginzburg-Landau equationen
dc.subject.ddc515en
dc.titleConstruction of a blow-up solution for the Complex Ginzburg-Landau equation in a critical case, β≠0en
dc.typeDocument de travail / Working paper
dc.description.abstractenWe construct a solution for the Complex Ginzburg-Landau (CGL) equation in ageneral critical case, which blows up in finite time T only at one blow-up point. We also give a sharp description of its profile. In a first part, we construct formally a blow-up solution. In a second part we give the rigorous proof. The proof relies on the reduction of the problem to a finite dimensional one, and the use of index theory to conclude. The interpretation of the parameters of the finite dimension problem in terms of the blow-up point and time allows to prove the stability of the constructed solution. We would like to mention that the asymptotic profile of our solution is different from previously known profiles for CGL or for the semilinear heat equation.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages85en
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02447669en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2020-01
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2020-05-12T11:28:21Z
hal.person.labIds
hal.person.labIds60
hal.person.labIds581232


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record