
Construction of a blow-up solution for the Complex Ginzburg-Landau equation in a critical case, β≠0
Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2022), Construction of a blow-up solution for the Complex Ginzburg-Landau equation in a critical case, β≠0. https://basepub.dauphine.fr/handle/123456789/20717
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-02447669Date
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
85
Metadata
Show full item recordAbstract (EN)
We construct a solution for the Complex Ginzburg-Landau (CGL) equation in ageneral critical case, which blows up in finite time T only at one blow-up point. We also give a sharp description of its profile. In a first part, we construct formally a blow-up solution. In a second part we give the rigorous proof. The proof relies on the reduction of the problem to a finite dimensional one, and the use of index theory to conclude. The interpretation of the parameters of the finite dimension problem in terms of the blow-up point and time allows to prove the stability of the constructed solution. We would like to mention that the asymptotic profile of our solution is different from previously known profiles for CGL or for the semilinear heat equation.Subjects / Keywords
Blow-up profile; Complex Ginzburg-Landau equationRelated items
Showing items related by title and author.
-
Nouaili, Nejla; Zaag, Hatem (2018) Article accepté pour publication ou publié
-
Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2022) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié
-
Zaag, Hatem; Nouaili, Nejla (2010) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié