• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Convergence Rate of Optimal Quantization and Application to the Clustering Performance of the Empirical Measure

Thumbnail
View/Open
cvgrate.pdf (578.8Kb)
Date
2020
Publisher city
Paris
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Publishing date
02-2020
Link to item file
https://hal.archives-ouvertes.fr/hal-02484426
Dewey
Probabilités et mathématiques appliquées
Sujet
Clustering performance; Convergence rate of optimal quantization; Distortion function; Empirical measure; Optimal quantization
URI
https://basepub.dauphine.fr/handle/123456789/20716
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Liu, Yating
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pagès, Gilles
506273 Laboratoire de Probabilités, Statistiques et Modélisations [LPSM UMR 8001]
Type
Document de travail / Working paper
Item number of pages
32
Abstract (EN)
We study the convergence rate of the optimal quantization for a probability measure sequence (µn) n∈N* on R^d converging in the Wasserstein distance in two aspects: the first one is the convergence rate of optimal quantizer x (n) ∈ (R d) K of µn at level K; the other one is the convergence rate of the distortion function valued at x^(n), called the "performance" of x^(n). Moreover, we also study the mean performance of the optimal quantization for the empirical measure of a distribution µ with finite second moment but possibly unbounded support. As an application, we show that the mean performance for the empirical measure of the multidimensional normal distribution N (m, Σ) and of distributions with hyper-exponential tails behave like O(log n √ n). This extends the results from [BDL08] obtained for compactly supported distribution. We also derive an upper bound which is sharper in the quantization level K but suboptimal in n by applying results in [FG15].

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.