• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Use in practice of importance sampling for repeated MCMC for Poisson models

Gajda, Dorota; Guihenneuc-Jouyaux, Chantal; Rousseau, Judith; Mengersen, Kerrie; Nur, Darfiana (2010), Use in practice of importance sampling for repeated MCMC for Poisson models, Electronic Journal of Statistics, 4, p. 361-383. 10.1214/09-EJS527

View/Open
EJS-2009-527-Sup1a.pdf (1.088Mb)
Type
Article accepté pour publication ou publié
Date
2010
Journal name
Electronic Journal of Statistics
Volume
4
Publisher
Institute of Mathematical Statistics
Pages
361-383
Publication identifier
10.1214/09-EJS527
Metadata
Show full item record
Author(s)
Gajda, Dorota
Centre de recherche en épidémiologie et santé des populations [CESP]
Guihenneuc-Jouyaux, Chantal
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
Centre de recherche en épidémiologie et santé des populations [CESP]
Rousseau, Judith
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mengersen, Kerrie

Nur, Darfiana
School of Mathematical and physical Sciences
Abstract (EN)
The Importance Sampling method is used as an alternative approach to MCMC in repeated Bayesian estimations. In the particular context of numerous data sets, MCMC algorithms have to be called on several times which may become computationally expensive. Since Importance Sampling requires a sample from a posterior distribution, our idea is to use MCMC to generate only a certain number of Markov chains and use them later in the subsequent IS estimations. For each Importance Sampling procedure, the suitable chain is selected by one of three criteria we present here. The first and second criteria are based on the L1 norm of the difference between two posterior distributions and their Kullback-Leibler divergence respectively. The third criterion results from minimizing the variance of IS estimate. A supplementary automatic selection procedure is also proposed to choose those posterior for which Markov chains will be generated and to avoid arbitrary choice of importance functions. The featured methods are illustrated in simulation studies on three types of Poisson model: simple Poisson model, Poisson regression model and Poisson regression model with extra Poisson variability. Different parameter settings are considered.
Subjects / Keywords
Poisson model; Importance Sampling; MCMC

Related items

Showing items related by title and author.

  • Thumbnail
    Importance Sampling combiné avec les algorithmes MCMC dans le cas d'estimations répétées 
    Gajda, Dorota; Guihenneuc-Jouyaux, Chantal; Rousseau, Judith; Mengersen, Kerrie; Nur, Darfiana (2009) Communication / Conférence
  • Thumbnail
    Combining Expert Opinions in Prior Elicitation 
    Albert, Isabelle; Donnet, Sophie; Guihenneuc-Jouyaux, Chantal; Low-Choy, Samantha; Mengersen, Kerrie; Rousseau, Judith (2012) Article accepté pour publication ou publié
  • Thumbnail
    Hidden Markov models for complex stochastic processes: A case study in electrophysiology. 
    Mengersen, Kerrie; Rousseau, Judith; Silburn, Peter; Johnson, Helen; White, Nicole M. (2012) Chapitre d'ouvrage
  • Thumbnail
    Bayesian nonparametric dependent model for partially replicated data: The influence of fuel spills on species diversity 
    Arbel, Julyan; Mengersen, Kerrie; Rousseau, Judith (2016) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behaviour of the posterior distribution in overfitted mixture models 
    Rousseau, Judith; Mengersen, Kerrie (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo