• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

On the Expressive Power of Deep Fully Circulant Neural Networks

Thumbnail
View/Open
Expressive_power.pdf (245.5Kb)
Date
2019
Publisher city
Paris
Collection title
Preprint Lamsade
Dewey
Araujo
Sujet
neural networks
URI
https://basepub.dauphine.fr/handle/123456789/20698
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Araújo, Alexandre
Negrevergne, Benjamin
Chevaleyre, Yann
Atif, Jamal
Type
Document de travail / Working paper
Abstract (EN)
In this paper, we study deep fully circulant neural networks, that is deep neural networks in which all weight matrices are circulant ones. We show that these networks outperform the recently introduced deep networks with other types of structured layers. Besides introducing principled techniques for training these models, we provide theoretical guarantees regarding their expressivity. Indeed, we prove that the function space spanned by circulant networks of bounded depth includes the one spanned by dense networks with specific properties on their rank. We conduct a thorough experimental study to compare the performance of deep fully circulant networks with state of the art models based on structured matrices and with dense models. We show that our models achieve better accuracy than their structured alternatives while required 2x fewer weights as the next best approach. Finally we train deep fully circulant networks to build a compact and accurate models on a real world video classification dataset with over 3.8 million training examples.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.