• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Reducibility of ultra-differentiable quasi-periodic cocycles under an adapted arithmetic condition

Thumbnail
View/Open
A22.pdf (310.7Kb)
Date
2019
Publisher city
Paris
Collection title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Link to item file
https://hal.archives-ouvertes.fr/hal-02408592
Dewey
Sciences connexes (physique, astrophysique)
Sujet
quasi-periodic; cocycles; Lyapunov exponent; rotation number; reducibility
URI
https://basepub.dauphine.fr/handle/123456789/20691
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Bounemoura, Abed
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Chavaudret, Claire
542596 Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
199970 Laboratoire Jean Alexandre Dieudonné [JAD]
Liang, Shuqing
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Type
Document de travail / Working paper
Item number of pages
15
Abstract (EN)
We prove a reducibility result for sl(2,R) quasi-periodic cocycles close to a constant elliptic matrix in ultra-differentiable classes, under an adapted arithmetic condition which extends the Brjuno-Rüssmann condition in the analytic case. The proof is based on an elementary property of the fibered rotation number and deals with ultra- differentiable functions with a weighted Fourier norm. We also show that a weaker arithmetic condition is necessary for reducibility, and that it can be compared to a sufficient arithmetic condition.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.