
φ-FEM: a finite element method on domains defined by level-sets
Duprez, Michel; Lozinski, Alexei (2020), φ-FEM: a finite element method on domains defined by level-sets, SIAM Journal on Numerical Analysis, 58, 2. 10.1137/19M1248947
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
SIAM Journal on Numerical AnalysisVolume
58Number
2Publisher
SIAM - Society for Industrial and Applied Mathematics
Publication identifier
Metadata
Show full item recordAuthor(s)
Duprez, Michel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lozinski, Alexei
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Abstract (EN)
We propose a new fictitious domain finite element method, well suited for elliptic problems posed in a domain given by a level-set function without requiring a mesh fitting the boundary. To impose the Dirichlet boundary conditions, we search the approximation to the solution as a product of a finite element function with the given level-set function, which is also approximated by finite elements. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any non-standard numerical integration (on cut mesh elements or on the actual boundary). We consider the Poisson equation discretized with piecewise polynomial Lagrange finite elements of any order and prove the optimal convergence of our method in the H1-norm. Moreover, the discrete problem is proven to be well conditioned, i.e. the condition number of the associated finite element matrix is of the same order as that of a standard finite element method on a comparable conforming mesh. Numerical results confirm the optimal convergence in both H1 and L2 norms.Subjects / Keywords
Finite element method; fictitious domain; level-setRelated items
Showing items related by title and author.
-
Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei (2023) Article accepté pour publication ou publié
-
Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei; Abbad, Narima (2022) Article accepté pour publication ou publié
-
Briand, Thibaud; Vacher, Jonathan (2016) Article accepté pour publication ou publié
-
Somphone, Oudom (2009-02) Thèse
-
Duprez, Michel; Lissy, Pierre (2018) Article accepté pour publication ou publié