Show simple item record

dc.contributor.authorDavila, Juan*
dc.contributor.authordel Pino, Manuel*
dc.contributor.authorDolbeault, Jean*
dc.contributor.authorMusso, Monica*
dc.contributor.authorWei, Juncheng*
dc.date.accessioned2020-04-28T13:10:43Z
dc.date.available2020-04-28T13:10:43Z
dc.date.issued2020
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20669
dc.language.isoenen
dc.subjectinner-outer gluing scheme
dc.subjectinfinite time blow-up
dc.subjectPatlak-Keller-Segel system
dc.subjectchemotaxis
dc.subjectcritical mass
dc.subjectblow-up
dc.subjectrate
dc.subjectblow-up profile
dc.subject.ddc515en
dc.titleExistence and stability of infinite time blow-up in the Keller-Segel system
dc.typeDocument de travail / Working paper
dc.description.abstractenThe simplest version of the parabolic-elliptic Patlak-Keller-Segel system in the two-dimensional Euclidean space has an 8π critical mass which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. Among functions with mass 8π, we find a neighborhood of a radial function such that any solution with initial condition in this neighborhood is globally defined and blows-up in infinite time with an explicit scaling involving the square root of the logarithm of the time.
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphine
dc.publisher.cityParisen
dc.identifier.citationpages39
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphine
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02394787
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2020
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.date.updated2020-05-13T09:39:43Z
hal.person.labIds84406*
hal.person.labIds84406*
hal.person.labIds60*
hal.person.labIds84406$$$7815*
hal.person.labIds251768*


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record