• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities

Thumbnail
Ouvrir
2002.04964.pdf (461.9Kb)
Date
2020
Ville de l'éditeur
Paris
Titre de la collection
Cahier de recherche CEREMADE, Université Paris-Dauphine
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-02477148
Indexation documentaire
Sciences connexes (physique, astrophysique)
Subject
nonlinear Schrödinger equation; Lieb-Thirring
URI
https://basepub.dauphine.fr/handle/123456789/20662
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Frank, Rupert L.
224225 Department of Mathematics (Caltech)
Gontier, David
60 CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lewin, Mathieu
status unknown
Type
Document de travail / Working paper
Nombre de pages du document
39
Résumé en anglais
We prove that the best Lieb-Thirring constant when the eigenvalues of a Schrödinger operator −Δ+V(x) are raised to the power κ≥1 (κ≥3/2 in 1D and κ>1 in 2D) can never be attained for a potential having finitely many eigenvalues. We thereby disprove a conjecture of Lieb and Thirring in 2D that the best constant is given by the one-bound state case for 1<κ≲1.165. In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.