Show simple item record

dc.contributor.authorHaspot, Boris*
dc.date.accessioned2020-04-22T13:00:01Z
dc.date.available2020-04-22T13:00:01Z
dc.date.issued2019
dc.identifier.issn0219-1997
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20650
dc.language.isoenen
dc.subjectCompressible Navier–Stokes equation
dc.subjectsaxisymmetric initial data
dc.subjectexistence of global strong solution
dc.subjectMach number limit
dc.subjectill prepared initial data
dc.subject.ddc515en
dc.titleFujita Kato solution for compressible Navier-Stokes equation with axisymmetric initial data and zero Mach number limit
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper we investigate the question of the existence of global strong solution for the compressible Navier Stokes equations for small initial data such that the rotational part of the velocity Pu 0 belongs to ˙ H N 2 −1. We show then an equivalence of the so called Fujita Kato theorem to the case of the compressible Navier-Stokes equation when we consider axisymmetric initial data in dimension N = 2, 3. The main difficulty is relied to the fact that in this case the velocity is not Lipschitz, in consequence we have to study carefully the coupling between the rotational and irrotational part of the velocity. In a second part, following the arguments developed in [13] we adress the question of convergence to the incompressible model (for ill-prepared initial data) when the Mach number goes to zero.
dc.relation.isversionofjnlnameCommunications in Contemporary Mathematics
dc.relation.isversionofjnldate2019
dc.relation.isversionofdoi10.1142/S021919971950041X
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewednon
dc.date.updated2020-06-12T12:10:25Z
hal.person.labIds60*


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record