dc.contributor.author | Burtea, Cosmin | |
dc.contributor.author | Haspot, Boris | |
dc.date.accessioned | 2020-04-22T12:47:11Z | |
dc.date.available | 2020-04-22T12:47:11Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0951-7715 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20649 | |
dc.language.iso | en | en |
dc.subject | PDe | |
dc.subject | Équation aux dérivées partielles | |
dc.subject | Navier-Stokes equations | |
dc.subject.ddc | 519 | en |
dc.title | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper we prove the existence of global strong solution for the Navier-Stokes equations with general degenerate viscosity coefficients. The cornerstone of the proof is the introduction of a new effective pressure which allows to obtain an Oleinik-type estimate for the so called effective velocity. In our proof we make use of additional regularizing effects on the velocity which requires to extend the technics developed by Hoff for the constant viscosity case. | |
dc.relation.isversionofjnlname | Nonlinearity | |
dc.relation.isversionofjnlvol | 33 | |
dc.relation.isversionofjnlissue | 5 | |
dc.relation.isversionofjnldate | 2020 | |
dc.relation.isversionofdoi | 10.1088/1361-6544/ab7102 | |
dc.relation.isversionofjnlpublisher | IOP Science | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2020-06-12T12:09:33Z | |