
Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs
Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2018), Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs, International Congress of Mathematicians 2018, World Scientific : Singapore, p. 2261-2285. 10.1142/9789813272880_0138
Voir/Ouvrir
Type
Communication / ConférenceDate
2018Titre du colloque
International Congress of Mathematics - ICM 2018Date du colloque
2018-05Ville du colloque
Rio de JaneiroPays du colloque
BrazilTitre de l'ouvrage
International Congress of Mathematicians 2018Éditeur
World Scientific
Ville d’édition
Singapore
Isbn
978-981-327-287-3;978-981-327-288-0
Nombre de pages
13Pages
2261-2285
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Dolbeault, Jean
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Esteban, Maria J.

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Loss, Michael
School of Mathematics - Georgia Institute of Technology
Résumé (EN)
The issue of symmetry and symmetry breaking is fundamental in all areas of science. Symmetry is often assimilated to order and beauty while symmetry breaking is the source of many interesting phenomena such as phase transitions, instabilities, segregation, self-organization, etc. In this contribution we review a series of sharp results of symmetry of nonnegative solutions of nonlinear elliptic differential equation associated with minimization problems on Euclidean spaces or manifolds. Nonnegative solutions of those equations are unique, a property that can also be interpreted as a rigidity result. The method relies on linear and nonlinear flows which reveal deep and robust properties of a large class of variational problems. Local results on linear instability leading to symmetry breaking and the bifurcation of non-symmetric branches of solutions are reinterpreted in a larger, global, variational picture in which our flows characterize directions of descent.Mots-clés
Symmetry; symmetry breaking; interpolation inequalities; Caffarelli-Kohn-Niren-berg inequalities; optimal constants; rigidity results; fast diffusion equation; carré du champ; bifurcation; instability.Publications associées
Affichage des éléments liés par titre et auteur.
-
Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2016) Article accepté pour publication ou publié
-
Esteban, Maria J.; Dolbeault, Jean (2014) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J. (2011) Communication / Conférence
-
Loss, Michael; Laptev, Ari; Esteban, Maria J.; Dolbeault, Jean (2013) Article accepté pour publication ou publié
-
Loss, Michael; Esteban, Maria J.; Dolbeault, Jean (2014) Article accepté pour publication ou publié