Show simple item record

dc.contributor.authorBouin, Emeric
dc.contributor.authorDolbeault, Jean
dc.contributor.authorSchmeiser, Christian
dc.date.accessioned2020-04-14T10:04:49Z
dc.date.available2020-04-14T10:04:49Z
dc.date.issued2020
dc.identifier.issn1120-6330
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20629
dc.language.isoenen
dc.subjectcompact supporten
dc.subjectcompactnessen
dc.subjectsemi-linear elliptic equationsen
dc.subjectNash inequalityen
dc.subjectinterpolationen
dc.subjectradial symmetryen
dc.subjectNeumann homogeneous boundary conditionsen
dc.subjectLaplacianen
dc.subject.ddc515en
dc.titleA variational proof of Nash’s inequalityen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis paper is intended to give a characterization of the optimality case in Nash's inequality, based on methods of nonlinear analysis for elliptic equations and techniques of the calculus of variations. By embedding the problem into a family of Gagliardo-Nirenberg inequalities, this approach reveals why optimal functions have compact support and also why optimal constants are determined by a simple spectral problem.en
dc.relation.isversionofjnlnameAtti della Accademia Nazionale dei Lincei. Classe di scienze fisiche, matematiche e naturali, Matematica e applicazioni
dc.relation.isversionofjnlvol31en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2020-03
dc.relation.isversionofjnlpages211-223en
dc.relation.isversionofdoi10.4171/RLM/886en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2020-04-14T09:58:58Z
hal.person.labIds60
hal.person.labIds60
hal.person.labIds13321


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record