Show simple item record

dc.contributor.authorHaspot, Boris
dc.contributor.authorJunca, Stéphane
dc.date.accessioned2020-04-06T09:49:55Z
dc.date.available2020-04-06T09:49:55Z
dc.date.issued2020
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20611
dc.language.isoenen
dc.subjectlinearly degenerate fielden
dc.subject.ddc515en
dc.titleFractional BV solutions for 2×2 systems of conservation laws with a linearly degenerate fielden
dc.typeDocument de travail / Working paper
dc.description.abstractenThe class of 2×2 nonlinear hyperbolic systems with one genuinely nonlinear field and one linearly degenerate field are considered. Existence of global weak solutions for small initial data in fractional BV spaces BVs is proved. The exponent s is related to the usual fractional Sobolev derivative. Riemann invariants w and z corresponding respectively to the genuinely nonlinear component and to the linearly degenerate component play different key roles in this work. We obtain the existence of a global weak solution provided that the initial data written in Riemann coordinates (w0,z0) are small in BVs×L∞,1/3≤s<1. The restriction on the exponent s is due to a fundamental result of P.D. Lax, the variation of the Riemann invariant z on the Lax shock curve depends in a cubic way of the variation of the other Riemann invariant w.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages36en
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02532444en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2020-04
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2020-04-06T09:39:48Z
hal.person.labIds60
hal.person.labIds34586$$$199970


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record