Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorHillairet, Matthieu
HAL ID: 170840
hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL]
dc.contributor.authorMoussa, Ayman
HAL ID: 10753
ORCID: 0000-0001-5802-6797
hal.structure.identifierLaboratoire d'Analyse, Topologie, Probabilités [LATP]
dc.contributor.authorSueur, Franck
HAL ID: 177864
dc.date.accessioned2020-04-03T10:44:55Z
dc.date.available2020-04-03T10:44:55Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20609
dc.language.isoenen
dc.subjectStokes flowen
dc.subjectkinetic equationen
dc.subjectBrinkman forceen
dc.subjectrigorous derivationen
dc.subject.ddc515en
dc.titleOn the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flowen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we are interested in the collective friction of a cloud of particles on the viscous incompressible fluid in which they are moving. The particle velocities are assumed to be given and the fluid is assumed to be driven by the stationary Stokes equations. We consider the limit where the number NNof particles goes to infinity with their diameters of order 1/N1/Nand their mutual distances of order 1/N1/31/N1/3. The rigorous convergence of the fluid velocity to a limit which is solution to a stationary Stokes equation set in the full space but with an extra term, referred to as the Brinkman force, was proven in [5] when the particles are identical spheres in prescribed translations. Our result here is an extension to particles of arbitrary shapes in prescribed translations and rotations. The limit Stokes-Brinkman system involves the particle distribution in position, velocity and shape, through the so-called Stokes' resistance matrices.en
dc.relation.isversionofjnlnameAIMS - American Institute of Mathematical Sciences
dc.relation.isversionofjnlvol12en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2019-08
dc.relation.isversionofjnlpages681-701en
dc.relation.isversionofdoi10.3934/krm.2019026en
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2020-04-03T10:40:52Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record