• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow

Hillairet, Matthieu; Moussa, Ayman; Sueur, Franck (2019), On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow, AIMS - American Institute of Mathematical Sciences, 12, 4, p. 681-701. 10.3934/krm.2019026

Type
Article accepté pour publication ou publié
Date
2019
Journal name
AIMS - American Institute of Mathematical Sciences
Volume
12
Number
4
Pages
681-701
Publication identifier
10.3934/krm.2019026
Metadata
Show full item record
Author(s)
Hillairet, Matthieu
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Moussa, Ayman cc
Laboratoire Jacques-Louis Lions [LJLL]
Sueur, Franck
Laboratoire d'Analyse, Topologie, Probabilités [LATP]
Abstract (EN)
In this paper, we are interested in the collective friction of a cloud of particles on the viscous incompressible fluid in which they are moving. The particle velocities are assumed to be given and the fluid is assumed to be driven by the stationary Stokes equations. We consider the limit where the number NNof particles goes to infinity with their diameters of order 1/N1/Nand their mutual distances of order 1/N1/31/N1/3. The rigorous convergence of the fluid velocity to a limit which is solution to a stationary Stokes equation set in the full space but with an extra term, referred to as the Brinkman force, was proven in [5] when the particles are identical spheres in prescribed translations. Our result here is an extension to particles of arbitrary shapes in prescribed translations and rotations. The limit Stokes-Brinkman system involves the particle distribution in position, velocity and shape, through the so-called Stokes' resistance matrices.
Subjects / Keywords
Stokes flow; kinetic equation; Brinkman force; rigorous derivation

Related items

Showing items related by title and author.

  • Thumbnail
    The movement of a solid in an incompressible perfect fluid as a geodesic flow 
    Glass, Olivier; Sueur, Franck (2012) Article accepté pour publication ou publié
  • Thumbnail
    The Vlasov-Navier-Stokes system in a 2D pipe: existence and stability of regular equilibria 
    Moussa, Ayman; Glass, Olivier; Han-Kwan, Daniel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid 
    Sueur, Franck; Glass, Olivier; Takahashi, Takéo (2012) Article accepté pour publication ou publié
  • Thumbnail
    On the motion of a small body immersed in a two dimensional incompressible perfect fluid 
    Glass, Olivier; Lacave, Christophe; Sueur, Franck (2014) Article accepté pour publication ou publié
  • Thumbnail
    On the motion of a small light body immersed in a two dimensional incompressible perfect fluid with vorticity 
    Glass, Olivier; Lacave, Christophe; Sueur, Franck (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo