• français
    • English
  • français 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Homogénéisation quantitative de milieux aléatoires : environnements dégénérés et modèle d’interface

Quantitative stochastic homogenization beyond elliptic equations

Thumbnail
View/Open
2019PSLED012.pdf (4.149Mb)
Date
2019-06-18
Dewey
Analyse
Sujet
Formes différentielles; Modèle d'interface; Percolation; Homogénéisation; Differential forms; Stochastic interface model; Percolation; Homogenization
URI
https://basepub.dauphine.fr/handle/123456789/20563
Collections
  • CEREMADE : Thèses
Metadata
Show full item record
Author
Dario, Paul
Thesis supervisor
Armstrong, Scott; Mourrat, Jean-Christophe
Type
Thèse
Abstract (FR)
Cette thèse est consacrée à l’homogénéisation stochastique, qui cherche à étudier le comportement d’équations aux dérivées partielles présentant des coefficients aléatoires oscillant rapidement. Elle est divisée en trois parties. La première partie correspond aux Chapitres 2 et 3 et cherche à étendre la théorie de l’homogénéisation stochastique quantitative, développée sous une hypothèse d’uniforme ellipticité, au contexte dégénéré de la percolation de Bernoulli sur-critique. Nous obtenons dans le Chapitre 2, un théorème d’homogénéisation quantitative ainsi qu’une théorie de la régularité à grande échelle pour les fonctions harmoniques sur l’amas infini. Dans le Chapitre 3, nous obtenons des estimées spatiales optimales en toute dimension pour le correcteur sur l’amas infini. Dans le Chapitre 4, nous étudions un autre type d’environnement dégénéré impliquant des formes différentielles et démontrons, dans ce contexte, un théorème d’homogénéisation quantitative. Dans le Chapitre 5, nous appliquons les idées de l’homogénéisation stochastique à un modèle issu de la physique statistique : le modèle de Ginzburg-Landau discret. Nous revisitons le début de la théorie de l’homogénéisation et la combinons avec des arguments de la théorie du transport optimal afin de démontrer un théorème de convergence quantitative pour la tension de surface du modèle.
Abstract (EN)
This thesis is devoted to the study of stochastic homogenization, which aims at studying the behavior of partial differentialequations with highly heterogeneous, but statistically homogeneous, random coefficients. It is divided into three parts.The first part corresponds to Chapters 2 and 3 and tries to extend the theory of quantitative stochastic homogenization,developed under an assumption of uniform ellipticity, to the degenerate setting of supercritical Bernoulli bond percolation.In Chapter 2, we prove a quantitative homogenization theorem as well as a large scale regularity theory and Liouvilleresults for harmonic functions on the infinite cluster. In Chapter 3, we obtain optimal spatial estimates in all dimension forthe corrector on the infinite cluster.In Chapter 4, we study another type of degenerate environment involving differential forms and prove, in this setting, aquantitative homogenization theorem.In Chapter 5, we apply ideas from homogenization to a model of statistical physics: the discrete Ginzburg-Landau model.In this chapter, we revisit the beginning of the theory of stochastic homogenization and combine it with arguments fromthe theory of optimal transport to derive a quantitative rate of convergence for the finite-volume surface tension of themodel.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.