Necessary and possible interaction between criteria in a 2-additive Choquet integral model
Mayag, Brice; Bouyssou, Denis (2020), Necessary and possible interaction between criteria in a 2-additive Choquet integral model, European Journal of Operational Research, 283, 1, p. 308-320. 10.1016/j.ejor.2019.10.036
Type
Article accepté pour publication ou publiéDate
2020Journal name
European Journal of Operational ResearchVolume
283Number
1Publisher
Elsevier
Pages
308-320
Publication identifier
Metadata
Show full item recordAuthor(s)
Mayag, BriceLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Bouyssou, Denis

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This paper deals with the interpretation of the 2-additive Choquet integral model in the context of Multiple Criteria Decision Making. When the set of alternatives is discrete, using classical interaction indices proposed in the literature may lead to interpretations that are not robust. Indeed, the sign of these indices may depend upon the arbitrary choice of a numerical representation within the set of all possible numerical representations. We tackle this problem in two ways. First, in the context of binary alternatives, we characterize the preference relations for which the problem does not occur. Outside the framework of binary alternatives, we propose a simple linear programming model allowing one to test for robust conclusions concerning the sign of interaction indices. We illustrate our results on a real world example in the domain of health.Subjects / Keywords
Multiple criteria decision analysis; Choquet integral; 2-additive Capacity; InteractionRelated items
Showing items related by title and author.
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2020) Communication / Conférence
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021) Article accepté pour publication ou publié
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021) Communication / Conférence
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2022) Document de travail / Working paper
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2022) Communication / Conférence