Covering a Graph with Clubs
hal.structure.identifier | ||
dc.contributor.author | Dondi, Riccardo | |
hal.structure.identifier | Università degli Studi di Milano-Bicocca = University of Milano-Bicocca [UNIMIB] | |
dc.contributor.author | Mauri, Giancarlo | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Sikora, Florian
HAL ID: 742949 ORCID: 0000-0003-2670-6258 | |
hal.structure.identifier | Università degli Studi di Milano-Bicocca = University of Milano-Bicocca [UNIMIB] | |
dc.contributor.author | Italo, Zoppis | |
dc.date.accessioned | 2020-02-03T15:19:14Z | |
dc.date.available | 2020-02-03T15:19:14Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1526-1719 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20520 | |
dc.language.iso | en | en |
dc.subject | graphs | en |
dc.subject.ddc | 005 | en |
dc.title | Covering a Graph with Clubs | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | Finding cohesive subgraphs in a network has been investigated in many network mining applications. Several alternative formulations of cohesive subgraph have been proposed, a notable one of them is s-club, which is a subgraph whose diameter is at most s. Here we consider a natural variant of the well-known Minimum Clique Cover problem, where we aim to cover a given graph with the minimum number of s-clubs, instead of cliques. We study the computational and approximation complexity of this problem, when s is equal to 2 or 3. We show that deciding if there exists a cover of a graph with three 2-clubs is NP-complete, and that deciding if there exists a cover of a graph with two 3-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of 2-clubs and 3-clubs. We show that, given a graph G=(V,E) to be covered, covering G with the minimum number of 2-clubs is not approximable within factor O(|V|1/2−ε), for any ε>0, and covering G with the minimum number of 3-clubs is not approximable within factor O(|V|1−ε), for any ε>0. On the positive side, we give an approximation algorithm of factor 2|V|1/2log3/2|V| for covering a graph with the minimum number of 2-clubs. | en |
dc.relation.isversionofjnlname | Journal of Graph Algorithms and Applications | |
dc.relation.isversionofjnlvol | 23 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2019 | |
dc.relation.isversionofjnlpages | 271-292 | en |
dc.relation.isversionofdoi | 10.7155/jgaa.00491 | en |
dc.relation.isversionofjnlpublisher | Brown University | en |
dc.subject.ddclabel | Programmation, logiciels, organisation des données | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | oui | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2020-02-03T14:57:09Z | |
hal.identifier | hal-02465066 | * |
hal.version | 1 | * |
hal.update.action | updateFiles | * |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |