• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Pyramids and Weak Hierarchies in The Ordinal Model for Clustering

Bertrand, Patrice; Janowitz, Melvin F. (2002), Pyramids and Weak Hierarchies in The Ordinal Model for Clustering, Discrete Applied Mathematics, 122, 1-3, p. 55-81. http://dx.doi.org/10.1016/S0166-218X(01)00354-7

Type
Article accepté pour publication ou publié
Date
2002
Nom de la revue
Discrete Applied Mathematics
Volume
122
Numéro
1-3
Éditeur
Elsevier
Pages
55-81
Identifiant publication
http://dx.doi.org/10.1016/S0166-218X(01)00354-7
Métadonnées
Afficher la notice complète
Auteur(s)
Bertrand, Patrice
Janowitz, Melvin F.
Résumé (EN)
There are several well known bijections between classes of dissimilarity coefficients and structures such as indexed or weakly indexed pyramids, as well as indexed closed weak hierarchies. Our goal will be to approach these results from the viewpoint developed by Jardine and Sibson (Mathematical Taxonomy, Wiley, New York, 1971). Properties of dissimilarity coefficients will be related to properties of the maximal linked subsets defined by the family of relations associated with the underlying dissimilarity coefficient. Our approach also involves a close study of the inclusion and diameter conditions introduced by Diatta and Fichet (in: E. Diday et al. (Eds.), New Approaches in Classification and Data Analysis, Springer, Berlin, 1994, p. 111). Typical results include showing that the diameter condition is equivalent to a weakening of the Bandelt four-point characterization that appears in Bandelt (Mathematisches Seminar, Universität Hamburg, Germany, 1992) as well as Bandelt and Dress (Discrete Math. 136 (1994) 21), and this in turn is equivalent to the maximal linked subsets being closed under nonempty intersections; the inclusion condition is equivalent to the 2-balls coinciding with the weak clusters; the Bandelt four-point characterization is equivalent to the maximal linked subsets coinciding with the weak clusters; and a Robinsonian dissimilarity coefficient is strongly Robinsonian (in the sense of Fichet (in: Y.A. Prohorov, V.V. Sazonov (Eds.), Proceedings of the First World Congress of the BERNOULLI SOCIETY, Tachkent, 1986, V.N.U. Science Press, Vol. 2, 1987, p. 123)) if and only if it satisfies the inclusion condition.
Mots-clés
Discrete Mathematics; Cluster Analysis

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    The k-weak hierarchical representations: an extension of the indexed closed weak hierarchies 
    Bertrand, Patrice; Janowitz, Melvin F. (2003) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Weak Hierarchies: A Central Clustering Structure 
    Bertrand, Patrice; Diatta, Jean (2014) Chapitre d'ouvrage
  • Vignette de prévisualisation
    Hierarchies and Weak-hierarchies as Interval Convexities 
    Bertrand, Patrice; Diatta, Jean (2022) Communication / Conférence
  • Vignette de prévisualisation
    Multilevel clustering models and interval convexities 
    Bertrand, Patrice; Diatta, Jean (2017) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Kernel Overlapping K-Means for Clustering in Feature Space 
    Essoussi, Nadia; Bertrand, Patrice (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo